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Aim

m Produce accurate but also detailed forecasts of prisoner
numbers at the aggregate national level but also for multiple
groupings based on attributes (and their interactions) that are
of interest to a variety of policy makers and correctional
administrators.
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m Produce accurate but also detailed forecasts of prisoner
numbers at the aggregate national level but also for multiple
groupings based on attributes (and their interactions) that are
of interest to a variety of policy makers and correctional
administrators.

m The level of detail and the coherent nature of the forecasts
enables informed and importantly aligned decision making
across multiple departments and at all levels of management:
strategic, tactical and operational.
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Australian adult prison population grouped by State and Legal Status
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Forecasting prison population

m Demographics (243 series =1+ 16 + 60 + 104 + 64):
State (8)
Sex (2)
Legal Status (2)
Indigenous Status (2)
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Forecasting prison population

m Demographics (243 series =1+ 16 + 60 + 104 + 64):
State (8)
Sex (2)
Legal Status (2)
Indigenous Status (2)

m ANZ Standard Offence Classification (243 series):
Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit
drugs, etc.)

Subdivisions (66) (Manslaughter and driving causing
death, Murder, Attempted Murder, etc.)

Groups (160) (Manslaughter, Driving causing death, etc)
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Forecasting prison population

m Demographics (243 series =1+ 16 + 60 + 104 + 64):
State (8)
Sex (2)
Legal Status (2)

WESIEREVN o Grouped time series.

m ANZ Standard Offence Classification (243 series):
Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit
drugs, etc.)

Subdivisions (66) (Manslaughter and driving causing
death, Murder, Attempted Murder, etc.)
Groups (160) (Manslaughter, Driving causing death, etc)

w Hierarchical time series.
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Australian domestic tourism

C e

Hierarchical: , Purpose of Travel: (x4)
m Australia (1) = Holiday
m States (7) ® VFR
m Zones (27) ®m Business
= Regions (76) m Other
Total: 111 series Total: 444 series |

W< ™
B -3%to0
[] 0to3%
] >3%
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Forecasting student numbers

/2 L " Y

m Total number of Monash Students

Faculty (8)

Campus (2 + Other)

Funding source (3)

Course level (3)
Commencing/returning (2)

Courses (457)

Units (5605) (not sure we will get here).
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Forecasting student numbers

/2 L " Y

m Total number of Monash Students

Faculty (8)

Campus (2 + Other) Total: 152,289

Funding source (3) . .
Course level (3) time series.

Commencing/returning (2)
Courses (457)
Units (5605) (not sure we will get here).
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Forecasting student numbers

Challenges:
w | arge number of series to forecast.

w \We want a flexible forecasting process using all
information available.

w \We want forecasts to be coherent (add up).

Courses (457)
Units (5605) (not sure we will get here).

Forecasting aggregation structures Hierarchical and grouped time series 9




m Forecast all series at all levels of aggregation or
groupings (in contrast to typical bottom-up,
top-down or middle-out approaches).
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m Forecast all series at all levels of aggregation or
groupings (in contrast to typical bottom-up,
top-down or middle-out approaches).

m Reconcile the forecasts so they add up correctly
using least squares optimization, i.e., find
closest reconciled forecasts to the original
forecasts.
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Hierarchical time series

(otal
® ® ©

Forecasting aggregation structures

Y1ott -

Yxt -

observed aggregate of all
series at time t.

observation on series X at time
t..
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Hierarchical time series

(otal
® ® ©

Key concept:

Y1ott -

Yxt -

observed aggregate of all
series at time t.

observation on series X at time
t..

W | can construct all time series in my collection if | know the

Forecasting aggregation structures

and the

series.

Hierarchical and grouped time series 11



Hierarchical time series

(Total

@ ® ©

Yt =

Y7ot t
YAt
YB.t
Yct

Forecasting aggregation structures

Y1ott -

Yxt -

observed aggregate of all
series at time t.

observation on series X at time
t..
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Hierarchical time series

V1ot - Observed aggregate of all

@ series at time t.

yx ¢ : observation on series X at time

t..
» ® ©
YTot t 111
_vac | _[r o0 (M
Yyt = ver | ~ |0 10 YB,t
Ve 00 1) Ve
)
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Hierarchical time series

V1ot - Observed aggregate of all

@ series at time t.
yx ¢ : observation on series X at time
t.

0 e e b; : vector of all bottom-level

series at time t.

Y7ot t 111 y
lvat| |100 At
Yt = Ve t = 1010 ;B,t
Yct 001/ N
55/_/ bt
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Hierarchical time series

Y1ott -
(Total> .
» ® © bt
Y7ot t 111
. YAt . 100
P = yvee | T lo10
yc,t 001

S

y: = Sby

Forecasting aggregation structures

observed aggregate of all
series at time t.

observation on series X at time
t.

vector of all bottom-level
series at time t.

Yat
YB,t

Yct

—
b;

Hierarchical and grouped time series 11



Grouped time series

® @ (A

ONORCITD
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Grouped time series

Yt =

®0 0,
YTot,t\ 1111
Yat 1100
YB,t 0 0 11
Vxt 10 1 0f [Yat
we | =0 1 0 1| YA
Vaxt 1000 ){B’”
Yav t 0100 HBi't_/
Ybx t 0010 by
YBY,t) 0 0 0 1

k3
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Grouped time series

Yt =

®0 0,
YTot,t\ 1111
Yat 1100
YB,t 0 0 11
Vxt 10 1 0f [Yat
we | =0 1 0 1| YA
Vaxt 1000 ){B’”
Yav t 0100 HBi't_/
YBx t 0 010 b
YBY,t) N O 0 O 1 Yt:sbt
k3
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Grouped time series

® @ (A
() (V) CotaD)

Key contribution:

w \We can now deal effectively with both hierarchical and
grouped aggregation structures.

’ A 77, ~ - ~ -
Vaxt 100 0 \YBX t )
Var 0100 Yby t
Yox. t 0010
Yoy t 0 001 = Sb;
S
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Hierarchical and grouped time series

Every collection of time series with linear
aggregation constraints can be written as:

Yt = Sby J

where
m y; is a vector of all series at time t.

m Sis a “summing matrix” containing the
aggregation constraints.

m b; is a vector of the most disaggregated series
at time t.
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BLUF: Best Linear Unbiased Forecasts
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

VT(h) — SP)A’T(h)

for some matrix P.
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

VT(h) — SP)A’T(h)

for some matrix P.

m P extracts and combines base forecasts y;(h) to get
bottom-level forecasts, Py;(h) = by (h).
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

VT(h) — SP)A’T(h)

for some matrix P.

m P extracts and combines base forecasts y;(h) to get
bottom-level forecasts, Py;(h) = by(h). E.g., P = [0|l,,] for
bottom-up,
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

VT(h) — SP)A’T(h)

for some matrix P.

m P extracts and combines base forecasts y;(h) to get
bottom-level forecasts, Py;(h) = by(h). E.g., P = [0|l,,] for
bottom-up, P = [p|0,_4] for top-down.
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:
VT(h) — SP)A’T(h)

for some matrix P.

m P extracts and combines base forecasts y;(h) to get
bottom-level forecasts, Py;(h) = by(h). E.g., P = [0|l,,] for
bottom-up, P = [p|0,_4] for top-down.

®m Saddsthemup, yr(h) = SBT(h).
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Forecasting framework

Let yr(h) be a vector of base (initial) h-step forecasts made at time T,
stacked in same order as y;.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

yr(h) = SPyr(h)

Key limitation:

w Traditional approaches use information only from a single level.

w Can we do better?

bottom-level forecasts, Py:(h) = b;(h). E.g., P = [0|l,,] for
bottom-up, P = [p|0,_4] for top-down.

®m Saddsthemup, yr(h) = SBT(h).
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Optimal reconciliation approach

r(h) = SPyr(h) ]
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Optimal reconciliation approach

r(h) = SPyr(h) J

The error variance of the reconciled forecasts is

Var(yrih — ¥r(h)) = SPW,P’S’
where W), = Var(yr., — ¥r(h)), error variance of base forecasts.

Theorem: BLUF via trace minimisation (MinT)
For any P satisfying SPS = S

mpin tr[SPW,P’S’]

has unique solution at P = (S'W, 'S)~'s'W, ™.

m Estimating W,, is challenging especially for h > 1.
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Optimal reconciliation forecasts

7r(h) = S(S'W,'S)~'s'W, jr(h) |

Reconciled forecasts Base forecasts
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Optimal reconciliation forecasts
yr(h) = S(S'W,'S)~'S'W, "jr(h) |
Reconciled forecasts Base forecasts

WLS Solution

m We assume that W,, = k,W; and approximate W by its
diagonal using in-sample one-step ahead forecast errors.

m Easy to estimate, and places weight where we have best
forecasts.

wman | Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman
“| (2019). “Optimal forecast reconciliation for hierarchical and grouped time

e series through trace minimization”. Journal of the American Statistical
Association, 1-45.
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Forecasting Australian prison population
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Australian Prison Population

oY ndieenous status
m NSW m Male m ATSI

= QLD = WA m Female ) m Non-ATSI

m SA m ACT Legal status:

m TAS m NT ®m Remanded

m VIC | m Sentenced

Forecasting aggregation structures Forecasting Australian prison population 19



Australian Prison Population

Er. I
m NSW = Male m ATSI
QLD = WA m Female ) m Non-ATSI

]
Legal status:

= SA = ACT Grouped Total:

m TAS m NT = Remanded .

, 243 series

VIC | m Sentenced
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Australian Prison Population

(Sex: Y Indigenous status:

m = Male m ATSI

- QLD = WA m Female ) = Non-ATSI
Legal status:

= A = ACT & - Grouped Total:

m TAS m NT = Remanded .

m VIC m Sentenced | 243 series

Forecast evaluation setup

m All adult prisoners in Australia: 2005Q1-2016Q4. (ABS
corrective services database).

m 36 obs as training set and generate base forecasts with
auto.arima() and ets () for h = 1 to 8-steps ahead.

m Obtain coherent forecasts using optimal reconciliation (WLS),
and bottom-up.

m Use a rolling window: 12 1-step, 11 2-steps,...,4 8-steps ahead
forecasts for evaluation.
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Forecast evaluation - MAPE

Forecast performance by Forecast Horizons

15-

MAPE

10-

2 4
Forecast Horizon
ARIMA Base == ARIMA WLS ETS Bottom-up
Forecast method:
ARIMA Bottom-up ETSBase === ETSWLS
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Forecast evaluation - RMSE

Forecast performance by Forecast Horizons

600 -

400~

RMSE

200~

4
Forecast Horizon

ARIMA Base == ARIMA WLS ETS Bottom-up
Forecast method:
ARIMA Bottom-up ETSBase === ETSWLS
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Forecast evaluation - Levels

ARIMA (Forecast Horizons: 1-4) ARIMA (Forecast Horizons: 5-8)
Total = Total =
state/NSW = state/NSW =
state/QLD - state/QLD -
state/VIC = state/VIC =
state/SA - state/SA -
state/TAS = state/TAS =
state/WA = state/WA =
state/NT = state/NT =
state/ACT = state/ACT =
sex/f- sex/f=
sex/m= sex/m=
leg/r= leg/r -
_8 leg/s - leg/s =
= MAPE MAPE
] ind/I = RMSE ind/I - RMSE
ind/NI = ind/NI=
State x Legal = State x Legal =
State x Sex - State x Sex -
State x Indigenous = State x Indigenous =
Sex x Indigenous = Sex x Indigenous =
Sex x Legal = Sex x Legal =
Indigenous x Legal = Indigenous x Legal =
State x Legal x Indigenous = State x Legal x Indigenous =
State x Sex x Indigenous = State x Sex x Indigenous =
State x Sex x Legal = State x Sex x Legal =
Sex x Legal x Indigenous = Sex x Legal x Indigenous =
State x Sex x Legal x Indigenous - State x Sex x Legal x Indigenous -
-60 -4 20 0 -0 30 0 30
% difference of forecast errors % difference of forecast errors
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Forecast evaluation - Levels

ETS (Forecast Horizons: 1-4) ETS (Forecast Horizons: 5-8)
Total - Total =
state/NSW = state/NSW =
state/QLD - state/QLD -
state/VIC = state/VIC =
state/SA - state/SA -
state/TAS - state/TAS =
state/WA = state/WA =
state/NT - state/NT =
state/ACT = state/ACT =
sex/f- sex/f=
sex/m= sex/m=
leg/r= leg/r -
_8 leg/s - leg/s =
= MAPE MAPE
] ind/I = RMSE ind/I - RMSE
ind/NI = ind/NI=
State x Legal = State x Legal =
State x Sex - State x Sex -
State x Indigenous = State x Indigenous =
Sex x Indigenous = Sex x Indigenous =
Sex x Legal = Sex x Legal =
Indigenous x Legal = Indigenous x Legal =
State x Legal x Indigenous = State x Legal x Indigenous =
State x Sex x Indigenous = State x Sex x Indigenous =
State x Sex x Legal = State x Sex x Legal =
Sex x Legal x Indigenous = Sex x Legal x Indigenous =
State x Sex x Legal x Indigenous - State x Sex x Legal x Indigenous -
20 20 0 20 2 0 4o
% difference of forecast errors % difference of forecast errors
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Y Other forecast reconciliation settings
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Temporal reconciliation

Tot
OO
(=9 () ()

Figure: A simple two-level
cross-sectional hierarchy.
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mporal reconciliation

Figure: A simple two-level Figure: A temporal hierarchy
cross-sectional hierarchy. for quarterly data.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and
 Fotios Petropoulos (2017). “Forecasting with Temporal Hierarchies”.
European Journal of Operational Research 262, 60-74.
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Cross-temporal reconciliation
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Cross-temporal reconciliation

coherent forecasts for Australian tourism”. Annals of Tourism Research

vt Nikolaos Kourentzes and George Athanasopoulos (2019). “Cross-temporal
forthcoming.

Forecasting aggregation structures Other forecast reconciliation settings



m Reconciliation (especially cross-temporal) offers a
single/aligned view of the future to all decision makers,
removing any organisational friction from misaligned decisions.
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m Reconciliation (especially cross-temporal) offers a
single/aligned view of the future to all decision makers,
removing any organisational friction from misaligned decisions.

m More crucially, it offers a data driven way to break within and
between organisations information silos.
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