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Aim

Produce accurate but also detailed forecasts of prisoner
numbers at the aggregate na�onal level but also for mul�ple
groupings based on a�ributes (and their interac�ons) that are
of interest to a variety of policy makers and correc�onal
administrators.

The level of detail and the coherent nature of the forecasts
enables informed and importantly aligned decision making
across mul�ple departments and at all levels of management:
strategic, tac�cal and opera�onal.
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Australian prison popula�on
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Australian prison popula�on
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Forecas�ng prison popula�on

Demographics (243 series = 1 + 16 + 60 + 104 + 64):
State (8)
Sex (2)
Legal Status (2)
Indigenous Status (2)

ANZ Standard Offence Classifica�on (243 series):
Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit
drugs, etc.)
Subdivisions (66) (Manslaughter and driving causing
death, Murder, A�empted Murder, etc.)
Groups (160) (Manslaughter, Driving causing death, etc)
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å Grouped �me series.

å Hierarchical �me series.



Australian domes�c tourism

Forecas�ng aggrega�on structures Hierarchical and grouped �me series 8

Hierarchical:
Australia (1)
States (7)
Zones (27)
Regions (76)

Total: 111 series

Purpose of Travel: (×4)
Holiday
VFR
Business
Other

Total: 444 series

Grouped:
Grand total: 555 series



Forecas�ng student numbers
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Total number of Monash Students
Faculty (8)
Campus (2 + Other)
Funding source (3)
Course level (3)
Commencing/returning (2)
Courses (457)
Units (5605) (not sure we will get here).



Forecas�ng student numbers
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Total number of Monash Students
Faculty (8)
Campus (2 + Other)
Funding source (3)
Course level (3)
Commencing/returning (2)
Courses (457)
Units (5605) (not sure we will get here).

Total: 152,289
�me series.



Forecas�ng student numbers
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Total number of Monash Students
Faculty (8)
Campus (2 + Other)
Funding source (3)
Course level (3)
Commencing/returning (2)
Courses (457)
Units (5605) (not sure we will get here).

Challenges:
å Large number of series to forecast.
å We want a flexible forecas�ng process using all

informa�on available.
å We want forecasts to be coherent (add up).



Key idea

Forecast all series at all levels of aggrega�on or
groupings (in contrast to typical bo�om-up,
top-down or middle-out approaches).

Reconcile the forecasts so they add up correctly
using least squares op�miza�on, i.e., find
closest reconciled forecasts to the original
forecasts.
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Hierarchical �me series

Total

A B C
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yTot,t : observed aggregate of all
series at �me t.

yX,t : observa�on on series X at �me
t. .
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yTot,t : observed aggregate of all
series at �me t.

yX,t : observa�on on series X at �me
t. .

Key concept:
å I can construct all �me series in my collec�on if I know the

aggrega�on structure and the bo�om-level series.



Hierarchical �me series

Total

A B C

yt =


yTot,t
yA,t
yB,t
yC,t


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yTot,t : observed aggregate of all
series at �me t.

yX,t : observa�on on series X at �me
t.

bt : vector of all bo�om-level
series at �me t.
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yTot,t : observed aggregate of all
series at �me t.

yX,t : observa�on on series X at �me
t.

bt : vector of all bo�om-level
series at �me t.



Grouped �me series
AX AY A

BX BY B

X Y Total

yt =
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yTot,t
yA,t
yB,t
yX,t
yY,t
yAX,t
yAY,t
yBX,t
yBY,t


=



1 1 1 1
1 1 0 0
0 0 1 1
1 0 1 0
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yt = Sbt

Key contribu�on:
å We can now deal effec�vely with both hierarchical and

grouped aggrega�on structures.



Hierarchical and grouped �me series

Every collec�on of �me series with linear
aggrega�on constraints can be wri�en as:

yt = Sbt

where
yt is a vector of all series at �me t.
S is a “summing matrix” containing the
aggrega�on constraints.
bt is a vector of the most disaggregated series
at �me t.
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Forecas�ng framework
Let ŷT(h) be a vector of base (ini�al) h-step forecasts made at �me T,
stacked in same order as yt.
(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

ỹT(h) = SPŷT(h)

for some matrix P.

P extracts and combines base forecasts ŷT(h) to get
bo�om-level forecasts, PŷT(h) = b̂T(h). E.g., P = [0|Im] for
bo�om-up, P = [p|0n−1] for top-down.

S adds them up, ỹT(h) = Sb̂T(h).
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for some matrix P.

P extracts and combines base forecasts ŷT(h) to get
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bo�om-level forecasts, PŷT(h) = b̂T(h). E.g., P = [0|Im] for
bo�om-up, P = [p|0n−1] for top-down.

S adds them up, ỹT(h) = Sb̂T(h).
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for some matrix P.

P extracts and combines base forecasts ŷT(h) to get
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bo�om-level forecasts, PŷT(h) = b̂T(h). E.g., P = [0|Im] for
bo�om-up, P = [p|0n−1] for top-down.

S adds them up, ỹT(h) = Sb̂T(h).
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Key limita�on:

å Tradi�onal approaches use informa�on only from a single level.

å Can we do be�er?



Op�mal reconcilia�on approach
ỹT(h) = SPŷT(h)

The error variance of the reconciled forecasts is

Var(yT+h − ỹT(h)) = SPWhP ′S ′

whereWh = Var(yT+h − ŷT(h)), error variance of base forecasts.

Theorem: BLUF via trace minimisa�on (MinT)
For any P sa�sfying SPS = S

min
P

tr[SPWhP ′S ′]

has unique solu�on at P = (S ′W−1
h S)−1S ′W−1

h .

Es�ma�ngWh is challenging especially for h > 1.
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Op�mal reconcilia�on forecasts

Reconciled forecasts Base forecasts
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h ŷT(h)



Op�mal reconcilia�on forecasts

Reconciled forecasts Base forecasts

WLS Solu�on
We assume thatWh = khW1 and approximateW1 by its
diagonal using in-sample one-step ahead forecast errors.
Easy to es�mate, and places weight where we have best
forecasts.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman
(2019). “Op�mal forecast reconcilia�on for hierarchical and grouped �me
series through trace minimiza�on”. Journal of the American Sta�s�cal
Associa�on, 1–45.
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Forecast evalua�on setup
All adult prisoners in Australia: 2005Q1-2016Q4. (ABS
correc�ve services database).
36 obs as training set and generate base forecasts with
auto.arima() and ets() for h = 1 to 8-steps ahead.
Obtain coherent forecasts using op�mal reconcilia�on (WLS),
and bo�om-up.
Use a rolling window: 12 1-step, 11 2-steps,...,4 8-steps ahead
forecasts for evalua�on.



Forecast evalua�on - MAPE
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Forecast evalua�on - RMSE
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Forecast evalua�on - Levels
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Temporal reconcilia�on
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cross-sec�onal hierarchy.
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Figure: A temporal hierarchy
for quarterly data.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and
Fo�os Petropoulos (2017). “Forecas�ng with Temporal Hierarchies”.
European Journal of Opera�onal Research 262, 60–74.



Cross-temporal reconcilia�on
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Nikolaos Kourentzes and George Athanasopoulos (2019). “Cross-temporal
coherent forecasts for Australian tourism”. Annals of Tourism Research
forthcoming.



Summary

Reconcilia�on (especially cross-temporal) offers a
single/aligned view of the future to all decision makers,
removing any organisa�onal fric�on from misaligned decisions.

More crucially, it offers a data driven way to break within and
between organisa�ons informa�on silos.
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Total Emergency Admissions via A&E

Forecas�ng aggrega�on structures References 30

1 2 3 4 5 6

51
00

53
00

55
00

Annual (k=52)

Forecast

2 4 6 8 10 12
25

00
26

00
27

00
28

00
29

00

Semi−annual (k=26)

Forecast

5 10 15 20 25

12
50

13
50

14
50

Quarterly (k=13)

Forecast

20 40 60 80

36
0

38
0

40
0

42
0

44
0

46
0

Monthly (k=4)

Forecast

50 100 150

18
0

19
0

20
0

21
0

22
0

23
0

Bi−weekly (k=2)

Forecast

50 100 150 200 250 300

90
95

10
0

10
5

11
0

Weekly (k=1)

Forecast

– – – – base reconciled


	Hierarchical and grouped time series
	BLUF: Best Linear Unbiased Forecasts
	Forecasting Australian prison population
	Other forecast reconciliation settings
	References

