

Forecasting prison numbers: a grouped time series approach

George Athanasopoulos

with Tom Steel & Don Weatherburn

Outline

- 1 Hierarchical and grouped time series
- **2** BLUF: Best Linear Unbiased Forecasts
- 3 Forecasting Australian prison population
- 4 Other forecast reconciliation settings
- 5 References

Aim

- Produce accurate but also detailed forecasts of prisoner numbers at the aggregate national level but also for multiple groupings based on attributes (and their interactions) that are of interest to a variety of policy makers and correctional administrators.
- The level of detail and the coherent nature of the forecasts enables informed and importantly aligned decision making across multiple departments and at all levels of management: strategic, tactical and operational.

Aim

- Produce accurate but also detailed forecasts of prisoner numbers at the aggregate national level but also for multiple groupings based on attributes (and their interactions) that are of interest to a variety of policy makers and correctional administrators.
- The level of detail and the coherent nature of the forecasts enables informed and importantly aligned decision making across multiple departments and at all levels of management: strategic, tactical and operational.

Australian prison population

Australian prison population

Australian prison population

Australian adult prison population: bottom level series

Forecasting prison population

- Demographics (243 series = 1 + 16 + 60 + 104 + 64):
 - State (8)
 - Sex (2)
 - Legal Status (2)
 - Indigenous Status (2)
- ANZ Standard Offence Classification (243 series):
 - Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
 - Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
 - Groups (160) (Manslaughter, Driving causing death, etc)

Forecasting prison population

- Demographics (243 series = 1 + 16 + 60 + 104 + 64):
 - State (8)
 - Sex (2)
 - Legal Status (2)
 - Indigenous Status (2)
- ANZ Standard Offence Classification (243 series):
 - Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
 - Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
 - Groups (160) (Manslaughter, Driving causing death, etc)

Forecasting prison population

- Demographics (243 series = 1 + 16 + 60 + 104 + 64):
 - State (8)
 - Sex (2)
 - Legal Status (2)
 - Indigenous Status (2)
- **→** Grouped time series.
- ANZ Standard Offence Classification (243 series):
 - Divisions (16) (Homicide, Sexual Assault, Robbery, Illicit drugs, etc.)
 - Subdivisions (66) (Manslaughter and driving causing death, Murder, Attempted Murder, etc.)
 - Groups (160) (Manslaughter, Driving causing death, etc)

Australian domestic tourism

Forecasting student numbers

Total number of Monash Students

- Faculty (8)
- Campus (2 + Other)
- Funding source (3)
- Course level (3)
- Commencing/returning (2)
- Courses (457)
- Units (5605) (not sure we will get here).

Forecasting student numbers

■ Total number of Monash Students

- Faculty (8)
- Campus (2 + Other)
- Funding source (3)
- Course level (3)
- Commencing/returning (2)
- Courses (457)
- Units (5605) (not sure we will get here).

Total: 152,289

time series.

Forecasting student numbers

Challenges:

- ➤ Large number of series to forecast.
- ➤ We want a flexible forecasting process using all information available.
- → We want forecasts to be coherent (add up).
 - Courses (457)
 - Units (5605) (not sure we will get here).

Key idea

- Forecast all series at all levels of aggregation or groupings (in contrast to typical bottom-up, top-down or middle-out approaches).
- Reconcile the forecasts so they add up correctly using least squares optimization, i.e., find closest reconciled forecasts to the original forecasts.

Key idea

- Forecast all series at all levels of aggregation or groupings (in contrast to typical bottom-up, top-down or middle-out approaches).
- Reconcile the forecasts so they add up correctly using least squares optimization, i.e., find closest reconciled forecasts to the original forecasts.

y_{Tot,t}: observed aggregate of all series at time *t*.

 $y_{X,t}$: observation on series X at time t.

y_{Tot.t}: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

t. .

Key concept:

 □ I can construct all time series in my collection if I know the and the bottom-level series.

$$oldsymbol{y}_t = egin{pmatrix} oldsymbol{y}_{ ext{Tot},t} \ oldsymbol{y}_{ ext{A},t} \ oldsymbol{y}_{ ext{B},t} \ oldsymbol{y}_{ ext{C},t} \end{pmatrix}$$

y_{Tot,t}: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

y_{Tot,t}: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

t. .

$$\mathbf{y}_{t} = \begin{pmatrix} y_{\text{Tot},t} \\ y_{\text{A},t} \\ y_{\text{B},t} \\ y_{\text{C},t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \begin{pmatrix} y_{\text{A},t} \\ y_{\text{B},t} \\ y_{\text{C},t} \end{pmatrix}$$

y_{Tot,t}: observed aggregate of all series at time *t*.

 $y_{X,t}$: observation on series X at time t.

b_t: vector of all bottom-level series at time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{Tot,t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

y_{Tot,t}: observed aggregate of all series at time t.

y_{X,t}: observation on series X at time

b_t: vector of all bottom-level series at time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{Tot,t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

$$y_t = Sb_t$$

$$\mathbf{y}_{t} = \begin{pmatrix} y_{Tot,t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{b}_{t}} \begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}$$

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{Tot,t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{X,t} \\ \mathbf{y}_{Y,t} \\ \mathbf{y}_{AX,t} \\ \mathbf{y}_{AY,t} \\ \mathbf{y}_{BX,t} \\ \mathbf{y}_{BX,t} \\ \mathbf{y}_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} \mathbf{y}_{AX,t} \\ \mathbf{y}_{AY,t} \\ \mathbf{y}_{BX,t} \\ \mathbf{y}_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

$$\mathbf{y}_{t} = \begin{pmatrix} y_{Tot,t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{b}_{t}} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $\mathbf{y}_{\mathsf{t}} = \mathbf{Sb}_{\mathsf{t}}$

Key contribution:

We can now deal effectively with both hierarchical and grouped aggregation structures.

 $\mathbf{y}_t = \mathbf{Sb}_t$

Hierarchical and grouped time series

Every collection of time series with linear aggregation constraints can be written as:

$$\mathbf{y}_t = \mathbf{Sb}_t$$

where

- \mathbf{y}_t is a vector of all series at time t.
- S is a "summing matrix" containing the aggregation constraints.
- **b**_t is a vector of the most disaggregated series at time t.

Outline

- 1 Hierarchical and grouped time series
- **2** BLUF: Best Linear Unbiased Forecasts
- 3 Forecasting Australian prison population
- 4 Other forecast reconciliation settings
- 5 References

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t .

(These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form

$$\tilde{\mathbf{y}}_{\mathsf{T}}(h) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_{\tau}(h)$ to get bottom-level forecasts, $P\hat{\mathbf{y}}_{\tau}(h) = \hat{\mathbf{b}}_{\tau}(h)$. E.g., $P = [0|I_m]$ for bottom-up, $P = [p|0_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{\tau}(h) = \mathbf{S}\hat{\mathbf{b}}_{\tau}(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_{\mathsf{T}}(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_{\mathsf{T}}(h) = \hat{\mathbf{b}}_{\mathsf{T}}(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_{\mathsf{m}}]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{\tau}(h) = \mathbf{S}\hat{\mathbf{b}}_{\tau}(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_T(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_T(h) = \hat{\mathbf{b}}_T(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_m]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.
- S adds them up. $\tilde{\mathbf{v}}_{\tau}(h) = \mathbf{S}\hat{\mathbf{b}}_{\tau}(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_T(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_T(h) = \hat{\mathbf{b}}_T(h)$. E.g., $\mathbf{P} = [0|\mathbf{I}_m]$ for bottom-up, $\mathbf{P} = [p|\mathbf{0}_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{T}(h) = \mathbf{S}\hat{\mathbf{b}}_{T}(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_{T}(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_{T}(h) = \hat{\mathbf{b}}_{T}(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_{m}]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{S}\hat{\mathbf{b}}_{\mathsf{T}}(\mathbf{h})$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_{T}(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_{T}(h) = \hat{\mathbf{b}}_{T}(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_{m}]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_{T}(h) = \mathbf{S}\hat{\mathbf{b}}_{T}(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_{T}(h)$ to get bottom-level forecasts, $\mathbf{P}\hat{\mathbf{y}}_{T}(h) = \hat{\mathbf{b}}_{T}(h)$. E.g., $\mathbf{P} = [\mathbf{0}|\mathbf{I}_{m}]$ for bottom-up, $\mathbf{P} = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.
- **S** adds them up, $\tilde{\mathbf{y}}_T(h) = \mathbf{S}\hat{\mathbf{b}}_T(h)$.

Let $\hat{\mathbf{y}}_T(h)$ be a vector of base (initial) h-step forecasts made at time T, stacked in same order as \mathbf{y}_t . (These will almost certainly never add up.)

Reconciled (coherent) forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{T}}(h) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(h)$$

Key limitation:

- ➤ Traditional approaches use information only from a single level.
- Can we do better?

bottom-level forecasts, $P\hat{\mathbf{y}}_T(h) = \mathbf{b}_T(h)$. E.g., $P = [\mathbf{0}|\mathbf{I}_m]$ for bottom-up, $P = [\mathbf{p}|\mathbf{0}_{n-1}]$ for top-down.

S adds them up, $\tilde{\mathbf{y}}_T(h) = \mathbf{S}\hat{\mathbf{b}}_T(h)$.

Optimal reconciliation approach

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

The error variance of the reconciled forecasts is

$$Var(\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{T}(h)) = SPW_hP'S'$$

where $W_h = \text{Var}(\mathbf{y}_{T+h} - \hat{\mathbf{y}}_T(h))$, error variance of base forecasts.

Theorem: BLUF via trace minimisation (MinT)

For any **P** satisfying SPS = S

has unique solution at $\mathbf{P} = (\mathbf{S}'\mathbf{W}_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{-1}$.

Estimating W_h is challenging especially for h > 1.

Optimal reconciliation approach

$$\tilde{\mathbf{y}}_{\mathsf{T}}(\mathbf{h}) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{T}}(\mathbf{h})$$

The error variance of the reconciled forecasts is

$$Var(\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{T}(h)) = SPW_{h}P'S'$$

where $\mathbf{W}_h = \text{Var}(\mathbf{y}_{T+h} - \hat{\mathbf{y}}_T(h))$, error variance of base forecasts.

Theorem: BLUF via trace minimisation (MinT)

For any P satisfying SPS = S

$$\min_{\mathbf{P}} \operatorname{tr}[\mathbf{SPW}_h \mathbf{P}' \mathbf{S}']$$

has unique solution at $\mathbf{P} = (\mathbf{S}'\mathbf{W}_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{-1}$.

Estimating W_h is challenging especially for h > 1.

Optimal reconciliation forecasts

$$\tilde{\mathbf{y}}_{\mathsf{T}}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{T}}(h)$$

Reconciled forecasts

Base forecasts

Optimal reconciliation forecasts

$$\tilde{\mathbf{y}}_{\mathsf{T}}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{T}}(h)$$

Reconciled forecasts

Base forecasts

WLS Solution

- We assume that $W_h = k_h W_1$ and approximate W_1 by its diagonal using in-sample one-step ahead forecast errors.
- Easy to estimate, and places weight where we have best forecasts.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Outline

- 1 Hierarchical and grouped time series
- **2** BLUF: Best Linear Unbiased Forecasts
- 3 Forecasting Australian prison population
- 4 Other forecast reconciliation settings
- 5 References

Australian Prison Population

Sex: **Location: Indigenous status:** Male ATSI NSW Female Non-ATSI QLD WA **Legal status:** SA ACT NT TAS Remanded Sentenced VIC

Australian Prison Population

Location: Sex: **Indigenous status:** Male ATSI NSW Female Non-ATSI QLD WA **Legal status:** SA ACT **Grouped Total:** TAS NT Remanded 243 series Sentenced VIC

Australian Prison Population

Forecast evaluation setup

- All adult prisoners in Australia: 2005Q1-2016Q4. (ABS corrective services database).
- 36 obs as training set and generate base forecasts with auto.arima() and ets() for h = 1 to 8-steps ahead.
- Obtain coherent forecasts using optimal reconciliation (WLS), and bottom-up.
- Use a rolling window: 12 1-step, 11 2-steps,...,4 8-steps ahead forecasts for evaluation.

Forecast evaluation - MAPE

Forecast evaluation - RMSE

Forecast evaluation - Levels

Forecast evaluation - Levels

Outline

- 1 Hierarchical and grouped time series
- **2** BLUF: Best Linear Unbiased Forecasts
- 3 Forecasting Australian prison population
- 4 Other forecast reconciliation settings
- 5 References

Temporal reconciliation

Figure: A simple two-level cross-sectional hierarchy.

Temporal reconciliation

Figure: A simple two-level cross-sectional hierarchy.

Figure: A temporal hierarchy for quarterly data.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74.

Cross-temporal reconciliation

Cross-temporal reconciliation

Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcoming**.

Summary

- Reconciliation (especially cross-temporal) offers a single/aligned view of the future to all decision makers, removing any organisational friction from misaligned decisions.
- More crucially, it offers a data driven way to break within and between organisations information silos.

Summary

- Reconciliation (especially cross-temporal) offers a single/aligned view of the future to all decision makers, removing any organisational friction from misaligned decisions.
- More crucially, it offers a data driven way to break within and between organisations information silos.

Outline

- 1 Hierarchical and grouped time series
- **2** BLUF: Best Linear Unbiased Forecasts
- 3 Forecasting Australian prison population
- 4 Other forecast reconciliation settings
- **5** References

References

Rob J. Hyndman and George Athanasopoulos (2018). Forecasting: principles and practice. 2nd Edn. OTexts. OTexts.org/fpp2/. Chapter 10.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcomin**

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN.

References

Rob J. Hyndman and George Athanasopoulos (2018). Forecasting: principles and practice. 2nd Edn. OTexts. OTexts.org/fpp2/. Chapter 10.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2019). "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization". *Journal of the American Statistical Association*, 1–45.

Nikolaos Kourentzes and George Athanasopoulos (2019). "Cross-temporal coherent forecasts for Australian tourism". *Annals of Tourism Research* **forthcomin**

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2017). "Forecasting with Temporal Hierarchies". *European Journal of Operational Research* **262**, 60–74

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN.

Thank you!

Total Emergency Admissions via A&E

