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Motivating Questions

1. Is there a relationship between violence and drug markets in urban
environments?

2. And what role (if any) do OCGs play?

◦ Classic theme of in urban criminology (2k papers published on the
topic)

◦ Typical Result I: correlations are generally positive and strong:
violence and drug dealing cluster in space (hotspots)

◦ Typical Result II: By disaggregating crime volumes: OCGs are more
likely to be engaged in episodes of violence surrounding drug dealing
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◦ However, more recent works show that as we move away from
cross-sectional analysis, the direction/intensity vary across geography
and institutions, everything else equal

▶ Many drug markets are relatively peaceful
▶ In some places, the correlation fails

Geographic nexus (if any) is ambiguous: many moving parts at
play...

In this set of works we speculate that an important transmission link
between violence and drugs is given by OCG dynamics
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MERSEYSIDE!

◦ 4th most populated metropolitan county (22 districts, Liverpool main one)

◦ Population: 1.38 million, similar in size to Sydney’s Eastern Harbour city area in
the “6 Cities Region” system.

◦ Highest number of OCGs per million: x2 national average. 25% more groups
than Greater London

◦ Merseyside Police force: “outstanding” in analytics/tackling serious and
organized crime
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OCGs
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◦ Our data: crime reports involving OCGMs

◦ OCGs (and their interaction) are our unit of analysis

◦ OCGM: “Individuals, normally working with others, with the capacity and
capability to commit serious crime on a continuing basis” (OCG
Mapping Manual)

◦ Data Limits: no information on victims, no non-crime information
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◦ 375,599 crime reports (corresponding to 353,530 individual
incidents)

◦ 62,948 actors, of which: 1,211 OCGMs

◦ 134 OCGs

◦ At individual level, OCG members are less likely to engage in violence
and to commit low-profile crime and more likely to engage in structured
crime involving complex co-offendig structures.

7 / 43



Motivation / Background Data Stylized Facts Working HP Outcomes Appendices References

From this...
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... to this!
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STYLIZED FACTS
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1. Stable Drug Markets and Violence coexist
◦ In a static approach, clustering of drug dealing and OCG violence is stable and

widespread also in Merseyside

◦ Classical result of disorganization literature is confirmed
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FROM A DYNAMIC PERSPECTIVE,

Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019
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Cross-correlation = 0.58
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◦ However, when we zoom into OCGs activities, correlations fall apart!

◦ No (direct) relationship...
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2. Areas are contendible...
◦ Frequent overlaps. OCGs are dominant in some areas and second-dominant

elsewhere

◦ (Very different from a consolidated mkt where observations are squeezed on
the X axis, no overlaps)

...and in fact, are actively contended!
◦ Market is competitive: leaders/followers fall in number of areas

◦ OCGs active in multiple areas are more likely to be dominant rather than
second-dominant in those areas

◦ Hence, areas are actively contended and defeat is costly 14 / 43
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A PRESSURIZED ENVIRONMENT...
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3. OCGs are Heterogeneous in the Degree of Cooperation
◦ Cooperation unlocks fresh resources (via division of labor, collusion in price

setting, improved market access...)

◦ Cooperation is rational, but constrained by multiple factors: potentially
unbounded competitive pressure, lack of contracts, etc.

◦ Episodic and highly asymmetric relationships are favoured

◦ In Merseyside
▶ 63% of OCGs crime with other OCGs
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Operative Questions:

1. Why do OCGs cooperate?

2. How do they choose their partners?

Operative Hypotheses:
1. In contendible illegal markets, cooperation is a mechanism to regularize

relations.

If cooperation falls apart, we expect market pressure to kick in.

Market pressure in illicit markets means violence

In other words: Business falls and Violence surges

2. OCGs strategically select their partners minimizing risk of future
conflict
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MEASURING OCG COOPERATION ON AREAS

◦ We build a dynamic cooperation index for each area m and month T :

Im,T =
links (across city) btw OCGs active in m at T

potential links (across city) btw OCGs active in m at T

◦ For each month T , the index is built across all data recorded through a
1-year rolling window.
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◦ We then estimate a Dynamic Poisson model:

log (E [count crimesm,t]) = fixed effects + Im,T

◦ Important: Fixed effect control for any time-varying and time-fixed (i.e.
neighborhood, disorganization, etc.) motif.
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RESULT 1. COOPERATION AND THE IMPACT ON AREAS

(1) (2) (3) (4) (5) (6)

Drug Dealing (class A) Violence with Injury

Cooperation Index 0.011∗∗ 0.012∗∗∗ 0.014∗∗∗ -0.01 -0.010∗∗ -0.015∗∗

(-0.01) (0.00) (0.00) (-0.01) (0.00) (0.00)
Constant -3.48∗∗∗ - - -2.37∗∗∗ - -

(-0.23) - - (-0.08) - -
Time F.E. N Y Y N Y Y

Neighborhood F.E. N N Y N N Y
Observations 6,792 3,639 2,283 6,792 3,639 2,283

AIC 2,000.02 1,444.69 1,457.72 4,285.27 3,429.42 3,406.32
BIC 2,020.50 1,450.89 1,550.71 4,305.74 3,435.97 3,504.57

Coefficients computed on a month-neighborhood basis (T = 1,...,42; m =1,...,201), % changes

◦ 1% increment in coop idx jointly and strongly associated to a 1.4%
increment in the monthly levels of drug dealing and a 1.5% reduction
of serious violence in the neighborhood

◦ This result implies that ”tranquility” is not necessarily ”good news”!
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UNDERSTANDING PAIRWISE COOPERATION

Who collaborates with whom? What are the determinants of
cooperation?

1. Construct a per-OCG measure of geographic predominance

2. Apply a divergence index of area dominance measuring disjoint
activity of each pair of OCGs:

Intuition: Compare “relevance” of an OCG net of mutual collaborations
(similar to an HH index)

3. Estimate:

P (link between OCG i and OCG j in area m) = f(Xi, Xj , Xm, di,j,m)

21 / 43
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RESULT 2. SPECIALIZATION AND SIZE MATTER
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◦ 10% increase in divergence index associated with a 13% increase in
probability of having at least a link between two OCGs

◦ This means that more established groups are more likely to
collaborate with peripheral groups

◦ This can be explained as a strategic reaction to perverse incentives of
an illicit market where unbounded competition can not be mitigated by
contracts. 22 / 43
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TAKE HOME MESSAGES

1. Competition and Cooperation provide a rich angle for describing the
complex relationship between OCGs on urban areas.

2. ”Tranquil” is not necessarily O.K.

3. Understanding incentives at play can help explaining and predicting the
evolution of the OCG network
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Appendix: More Results, References
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What about urban OCGs?

1. Violence can propagate across OCG through both time and space
proximity (e.g. Papachristos, 2009, Papachristos et al., 2012,
Papachristos, 2014, Papachristos et al., 2015)

2. Various sociological theories linking competition to explain OCG
violence

Using neighborhood as the unit of measure, determinants of
competition can be group identity or factors related to (ethnic)
cohesiveness

3. OCGs, Violence and drugs

Within the network approach, Coutinho et al. (2020) look at motorcycle
OCGs intel data in Canada and find that in the drug business
collaborations are important but selective:

Large OCGs tend not to collaborate when their respective illicit (drug)
markets overlap

However, A unifying theory on OCG, Drugs, Violence is missing
25 / 43
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MODEL 1/3

(Rozzi, Giovannetti, Pin, Campana, 2024)

◦ Imagine Merseyside is made of 10 drug dealing spots and is
populated by 10 OCGs only.

◦ OCGs are symmetric in every aspect

◦ Spots have an objective profitability: u10 > u9 > u8, etc.. which all
OCGs know

◦ Each spot can be occupied by one OCG per period: first come, first
served.

◦ If two OCGs step on each other, there will be a costly fight
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MODEL 2/3

Behavioural Assumptions

◦ OCGs are rational: the value of an area does not depend on the
profitability of the location only, but also on the risk of finding that
area occupied by other OCGs

OCGs like profits and do not like to step on each-other feet!

◦ OCGs:

1. Know the profitability of areas
2. Remember which areas from those they explored in the previous

periods were occupied by other OCGs or free
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MODEL 3/3
◦ Overnight, each OCG hides in its hideout outside Merseyside

◦ Each morning, each OCG

1. Computes the subjective value of each area and ranks areas by
their subjective value

2. Decides whether to engage in drug trade (depending on a
parameter of “intensity”, universal across OCGs)

◦ If No:
▶ They do nothing until the next morning

◦ If Yes:
▶ They begin the exploration according to the ranking.
▶ Once they find an empty spot, they settle in the spot, sell the drugs

then go back to the hideout
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EQUILIBRIUM
WITH HIGH INTENSITY
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◦ With high intensity, OCGs efficiently sort themselves in areas, no fights.
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EQUILIBRIUM
WITH LOW INTENSITY
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◦ With low intensity, all OCGs give little value to previous explorations (as
explorations are very discontinuous) and try their chance on high-value
area

◦ As a result, OCGs end up stepping on each-other
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EQUILIBRIUM
WITH MEDIUM INTENSITY
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◦ With medium intensity, equilibrium dynamics are complex!
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EQUILIBRIUM
WITH MEDIUM INTENSITY (NOW WITH STREAKS)
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◦ With medium intensity, equilibrium dynamics are rich

◦ Streaks (i.e. periods of uninterrupted control from a single OCG on one
territory) emerge only on the mezzanine level (middle-value areas)
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STREAKS IN THE DATA
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◦ The streak structure appears in the data too. This highlights the
criticality of the medium-value areas for targeting purposes

33 / 43



Motivation / Background Data Stylized Facts Working HP Outcomes Appendices References

◦ From Lum (2008):

... More stable drug markets may have less violence as competition
wanes. It is unclear how individual routines aggregate into crime
patterns and subsequently how drug-violence routines and interactions
result in coinciding spatial patterns. Furthermore, the existence of drugs
and violence at the same places may not be due to an interaction
between the two, but both may occur as a result of other factors

◦ Eight tracts in Seattle show results counter to expectations. There
are areas with spatial clustering of violence or drugs separately.
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CRIMES

CRIME CLASS ALL INCIDENTS WITH INDIVIDUAL WITH OCGM MATCHED
COUNT % COUNT % COUNT %

Arson 3,037 0.81 422 0.33 31 0.59 13.90
Burglary 44,226 11.78 6,615 5.13 671 12.81 14.96
Criminal Damage 57,985 15.45 9,481 7.36 313 5.97 16.35
Drug Possession (A) 4,056 1.08 3,990 3.10 115 2.20 98.37
Drug Possession (B/C) 15,597 4.16 15,263 11.85 711 13.57 97.86
Drug Trafficking (A) 3,029 0.81 2,974 2.31 310 5.92 98.18
Drug Trafficking (B/C) 3,844 1.02 3,462 2.69 228 4.35 90.06
Harassment 32,022 8.53 13,143 10.20 276 5.27 41.04
Other 10,825 2.88 6,952 5.40 432 8.25 64.22
Robbery 4,824 1.29 1,550 1.20 130 2.48 32.13
Sexual 2,070 0.55 1,221 0.95 8 0.15 58.99
Theft or Fraud 125,882 33.54 28,451 22.08 803 15.33 22.60
Violence without Injury 7,942 2.12 3,625 2.81 171 3.26 45.64
Violence with Injury 56,550 15.07 28,598 22.20 799 15.25 50.57
Weapons Related 3,450 0.92 3,096 2.40 241 4.60 89.74
Sum 375,339 100 128,843 100 5,239 100 34.33∗

∗ On total crimes
Source: Merseyside Police Force
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Matching Rates
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◦ Aside: Networks are flexible tools!

◦ Can describe complex, dynamic, multilayered relationships

◦ Layers can be anything (e.g., financial transactions, market stages,
family relationships, etc.)
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Example: London Network of co-offending and victimization (cross-section: 2018-2023).
N = 304,635 accused individuals and/or victims. M = 59,026 coop links, L=153,079
victimization links 38 / 43
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Zoom on two clusters (red: victimization. green: coop)
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WHAT DO OCG COOPERATE ON?
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◦ Intuition: if market pressure exists, it must be that only worth-enough
ventures stimulate cooperation

◦ Proxy the ”value” of a crime with the average charge (in months) that
similar crimes attracted, taking as a reference the last ten years of court
ruling of U.K.

◦ Use count ERGM estimation methods to estimate:

intensity of cooperation btw OCG i OCG j = F (valuei, valuej , Xi, Xj)40 / 43
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(1) (2) (3) (4) (5)

Total Crime (sum) 1.330*** 0.965***
(0.194) (0.144)

Total Crime (abs diff) -1.883*** -1.507***
(0.394) (0.351)

Drug Trafficking (sum) 10.845*** 9.207***
(1.898) (1.749)

Drug Trafficking (abs diff) -13.154*** -12.166***
(3.539) (3.535)

Acquisitive Crime (sum) 6.506*** 5.272***
(1.493) (1.424)

Acquisitive Crime (abs diff) -3.829 -3.246
(2.027) (1.928)

Violence with Injury (sum) 1.623*** 1.310***
(0.243) (0.209)

Violence with Injury (abs diff) -2.288*** -2.010***
(0.475) (0.454)

Weapons (sum) 11.787** 8.790*
(4.313) (4.027)

Weapons (abs diff) -4.874 -3.653
(6.285) (6.335)

Age (abs diff) -0.043** -0.040** -0.042** -0.036** -0.035*
(0.013) (0.015) (0.014) (0.013) (0.014)

Density 0.188 -0.209 -0.836*** -0.269 -0.778***
(0.138) (0.160) (0.246) (0.156) (0.224)

Triadic Closure 0.590*** 0.499***
(0.100) (0.101)

Observations 3,570 3,570 3,570 3,570 3,570
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1. An increment of 1 unit of per-OCGM crime intensity throughout the
period raises the odds of cooperation by roughly 3.278 times

2. A comparable increment in the gap of crime intensity reduces the odds
of collaboration by 6.57

3. Triadic closure tests existence of network-based strategic effects.
OCGs are 1.80 times more likely to cooperate with an OCG if any of
their partners is already collaborating with that OCG.

4. Disaggregating for crime classes: relationship holds for given level of
intensity

5. Crime typologies diverge in significance and magnitude of effects
▶ Theoretical by-product: risk-reward profiles are heterogeneous

across classes

▶ Thin markets: For some classes risk-reward is too weak.
Competition act as a leveler. Market forces hinder long-lasting
cooperation

▶ Thick markets: Drug trade > Weapons > Acquisitive > Violence
42 / 43
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