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Aim: The aim of this report is to generate point and interval forecasts for the monthly average male and female prison 
population in NSW.

Method: Separate ARIMA and Exponential Smoothing (ETS) models were fitted to data on the daily average number of 
male and female prisoners held in NSW correctional centres between July 1997 and April 2018. Model residuals were 
examined to check model adequacy. Comparative model evaluation began with a minimum training window of 36 months. 
The training window was then expanded one observation at a time until the end of the sample. Models were re-identified 
and re-estimated with each step and forecasts were generated and evaluated against actual observations using absolute 
percentage errors (APEs) and forecast interval coverage was calculated. 

Results: Over the short-term, both classes of models returned fairly accurate forecasts for both male and female prisoners. 
For the male series the accuracy of the models varied from 0.51% to 2.86% for the mean APE across the 1 to 12-steps 
ahead forecast horizons. The forecasts for the females were slightly less accurate, varying from 1.67% to 6.31%. Over the 
longer term the forecasts from the two models began to diverge.

Conclusion: For both the male and female series it seems that ARIMA forecasts are slightly more accurate and are probably 
preferable to those generated by ETS models. 
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INTRODUCTION

Correctional administrators have no control over the number of 
persons remanded in custody or sentenced to prison. Accurate 
forecasts of inmate numbers are therefore critical for effective 
prison management. Prison forecasting, however, can be a 
hazardous enterprise. The size of the prison population at any 
point in time is a complex function of the number of people 
offending, the risk of arrest for offending, the risk of bail refusal 
given arrest, the risk of conviction given arrest, the risk of 
imprisonment given conviction, the amount of time spent in 
custody and the likelihood of return to custody. These factors can 
change very rapidly. Changes in the likelihood of bail refusal, in 
particular, can have a very marked effect on the size of the prison 
population (Halloran, Watson & Weatherburn 2017). 

Different approaches to prison forecasting are generally 
employed, depending on whether the requirement is for a long-
term forecast (e.g. more than three years) or a short-term forecast 
(one to two years). In the former case the usual practice is to base 
the forecasts on changes to age-specific rates of imprisonment 
and projected changes to the age structure of the population 
(e.g. Donnelly et al. 2015). This approach can also be informed 
by simulation modelling designed to project the likely impact 
of changes in policing, bail or sentencing policy. In the latter 
case the usual approach is to employ pure time series models. 
These models are typically univariate models. The forecasts 
they produce are based solely on information contained (but not 
necessarily apparent) in past values of the prison population (e.g. 
seasonal changes or changes in trends in inmate numbers). In 
this report with employ both ARIMA and Exponential Smoothing 
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(ETS) models to generate forecasts (for an introduction to these 
see Hyndman & Athanasopoulos 2018).  

Univariate forecasting models are valuable where forecasts 
need to be done quickly or need to be automated and/or where 
the factors influencing a process are unknown or interact in too 
complex a fashion to permit construction of a reliable multivariate 
model. The NSW Bureau of Crime Statistics and Research 
(BOCSAR) currently relies on an ARIMA model developed by 
Donnelly and Wan (2016) to generate short-term forecasts 
of changes in inmate numbers in NSW 12-months ahead. At 
present, however, the model does not provide separate forecasts 
for male and female prisoners. This is unfortunate, as in Australia 
and most other parts of the world, the correctional systems 
for male and female prisoners are distinct. The present report 
therefore updates previous studies in presenting the results of 
an effort to produce reliable and separate forecasts for male and 
female prisoners.

TRENDS IN MALE AND FEMALE INMATE 
NUMBERS

Figure 1 shows the daily average number of male and female 
prisoners in NSW between July 1997 and April 2018. Both 
series exhibit increase in prison numbers, especially since 2015, 

Figure 1. Total monthly averages based on daily totals for male and 
female persons in prison for NSW

as indicated by the strong positive trend in the data. There is, 
however, a large dip in both male and female prisoner numbers 
between 2010 and 2012 (marked by the red line). We have been 
advised that the dip is largely due to a re-organisation in the NSW 
Police Service in which the functions of the Highway Patrol were 
first subsumed within each Local Area Command before being re-
established as a separate command in 2012 (Blanchette 2018). 
The change caused the number of persons proceeded against to 
court for road traffic and motor vehicle regulatory offences to fall 
from 55,621 in 2009 to 41,315 in 2012. Thereafter, the number 
proceeded against for this offence began rising again.1 

METHOD

DATA SOURCE

Data for the study were extracted from OIMS, the offender 
information management system maintained by Corrections 
NSW. The data consists of the daily average number of male 
and female prisoners held in full-time custody between July 1997 
and April 2018. The total includes all those held in correctional 
centres, transitional centres and police/court cell complexes 
managed by CSNSW.
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Figure 2. Seasonal sub-series plots for male and female persons 
in prison

EXPLORATORY DATA ANALYSIS  

Figure 2 shows seasonal sub-series plots for both male and 
female prisoners. Seasonal sub-series plots collect and plot 
together the seasons within the data, in this case the months. 
Hence the first line in the panels are all the Januaries plotted 
together, then all the Februaries, and so on. The horizontal blue 
line is the average of the corresponding month across the entire 
sample. These plots reveal a weak seasonal component in the 
data for both males and females with an increasing average in the 
first four months reaching a peak in April but not much variation 
after that. The seasonal component is likely due to the fact that 
the courts close down over the Christmas/New Year holiday 
period and this temporarily slows down the rate at which people 
remanded in custody are released. 

IDENTIFYING TIMES SERIES MODELS

Two general and broadly used classes of models are considered. 
In particular, ARIMA models and exponential smoothing models. 
These provide alternative approaches to time series modelling. 
ARIMA models aim at describing and capturing auto-correlations 
within the data; while exponential smoothing models are built on 
the interactions of time series components, such as trend and 
seasonality, and generate forecasts that are weighted averages 
of past observations, with the weights decaying exponentially 
as the observations get older. We implement the modelling 

frameworks for both classes of models with the forecast package 
in R (version 8.5) using the auto.arima() and ets() functions. In 
what follows we present enough details for someone to follow 
the modelling implemented in the report. For further details and 
a good introduction to these modelling frameworks and the 
strategies used please refer to Chapters 7 and 8 of Hyndman and 
Athanasopoulos (2018).

SELECTING ARIMA MODELS

ARIMA models are defined by the orders of their autoregressive 
and moving average components as well as the order of 
differencing required to achieve stationarity in the data. 
These are represented by ARIMA (p,d,q)(P,D,Q)[m] where 
(p,d,q) respectively represent the orders of the autoregressive 
component, differencing and moving average component, (P,D,Q) 
represent their seasonal counterparts, and m corresponds to the 
number of observations per year.

The first step in ARIMA modelling is to ensure stationarity in 
the data by selecting the appropriate orders of differencing. As 
both the male and female series display a very weak seasonal 
component no seasonal differencing is required and therefore 
we set D=0. d is then selected by the KPSS test (Kwiatkowski, 
Phillips, Schmidt, & Shin, 1992). For both the male and female 
series first order differencing d=1 is adequate to ensure 
stationarity. The remaining seasonal dynamics are captured 
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Figure 3. Residual analysis of the ARIMA model for the male series

via a seasonal AR component. Once stationarity is achieved, 
an exhaustive search through all possible combinations of p, 
q, P and Q is performed, with maximum orders of 5 and 2 for 
the non-seasonal and seasonal components respectively, while 
both including and not including a constant. The model with the 
minimum AICc (bias corrected Akaike Information Criterion) is 
selected.  

The exhaustive search process selects an ARIMA (1,1,0)(2,0,0)
[12] with drift. The residual analysis presented in Figure 3 shows 
that the residuals are well behaved without any significant 
dynamics left over. The p-value associated with the Ljung-Box 
test statistic is 0.25. Hence, the null hypothesis of no significant 
joint autocorrelation for the first 24 lags cannot be rejected at any 
reasonable level of significance. Furthermore, the residuals seem 
to be very close to being normal an advantage for generating 
prediction intervals assuming normally distributed errors. We 
should note that as a robustness check in what follows we do 
generate prediction intervals using bootstrap errors but the 
empirical coverage results are not sensitive to this choice and 
therefore we do not report those results.

The ARIMA model for the female series is an ARIMA (2,1,0)(1,0,0)
[12] with drift. The residual analysis is presented in Figure 4 which 

shows again well behaved residuals with no left over dynamics. 
The Ljung-Box statistic has a p-value of 0.39 not rejecting the null 
hypothesis of no joint autocorrelation for the first 24 lags.

SELECTING EXPONENTIAL SMOOTHING 
MODELS

The general class of exponential smoothing models we consider 
are, innovations state space models first introduced in this form 
by Ord et al. (1997) and subsequently developed in a generalised 
class of models by various contributors (interested readers 
can refer to Hyndman et al., 2008 for full details). These are 
conveniently referred to as ETS(,,) models, reflecting the three 
components (Error, Trend, Seasonal) that characterise a model 
and how these components interact. The modelling framework 
we implement allows for the error process to be either additive 
or multiplicative; for the trend component to be either, none, 
additive, or additive-damped; and for the seasonal component 
to be either, none, additive or multiplicative. Table 1 shows a 
two-way classification for the trend and seasonal components of 
exponential smoothing models. For each cell there exist two ETS 
models, one with additive errors (A) and one with multiplicative 
errors (M). For each series the model with the lowest AIC among 
the 18 possible models is selected.
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Figure 4. Residual analysis of the ARIMA model for the female series

Figure 5. Residual analysis of the ETS model for male series
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Figure 6. Residual analysis of the ETS model for the female series

The model selected for the male series is an ETS(A,Ad,A), hence 
the model components comprise additive errors, an additive 
damped trend and additive seasonality. The residual analysis in 
Figure 5 shows that in general the residuals are well behaved. 
However, there are some first order dynamics left over. This may 
affect the prediction intervals from these models, as these may 
not have the correct empirical coverage. With ETS models there 
is not much more one can do in capturing these dynamics. At this 
stage we note this as a disadvantage of the ETS model for the 
male series and we keep this in mind for when we perform further 
comparisons between the two classes of models. 

The model selected for the female series is an ETS (A,A,A). The 
residual analysis shown in Figure 6 shows that the model has 
captured all dynamics with well-behaved residuals resembling 
white noise and close to normally distributed.

RESULTS

FORECASTING FROM THE ARIMA AND ETS 
MODELS

Figure 7 shows forecasts generated from the selected ARIMA 
and ETS models for the male and female series. The forecasts 
from the two sets of models for up to h = 12-steps ahead do not 
look very dissimilar and both look sensible with similar prediction 
intervals. They are both trending upwards with the exponential 
smoothing models also projecting a weak seasonal component. 

However, there are major differences between the nature of the 
two sets of forecasts and projections. Although our aim is to 
project up to 12-steps ahead some longer-term (5-year ahead) 
forecasts are generated and plotted in Figure 8. These allow us to 

Table 1.  A two-way classification for the trend and seasonal components of exponential smoothing models. 
For each combination of these there exist two ETS models: one with additive errors and one with 
multiplicative errors

Trend Component

Seasonal component
N A M

(None) (Additive) (Multiplicative)
N (None) (N,N) (N,A) (N,M)
A (Additive) (A,N) (A,A) (A,M)
Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M)
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Figure 7. Point and interval forecasts for the male and female series 
from the selected ARIMA and ETS models

better understand the nature of the forecast trajectories and how 
these differ between the models. The figure demonstrates that 
the two sets of forecasts substantially diverge especially beyond 
2-years ahead – shown by the vertical black line. In the case 
of the male series the damping factor in the ETS model really 
flattens out the trend. In contrast the ETS model for females 
projects higher growth than the ARIMA model. Also of noticeable 
difference is the magnitude of the prediction intervals the ETS 
ones being much wider. It should be noted again that these 
projections are provided for demonstrative purposes only and for 

understanding the difference in the model projections. 

EXTENSIVE FORECAST EVALUATION OF THE 
ARIMA AND ETS MODELS

Table 2 provides an evaluation for the forecast accuracy of the 
two sets of models applied to the male and female series. The 
evaluation process starts using a minimum training window of 36 
months. The training window is then expanded one observation 
at a time until the end of the sample. Models are re-identified and 
re-estimated with each step and forecasts are generated and 
evaluated against actual observations using absolute percentage 
errors. The evaluation is extensive and comprehensive as it 
involves 213 1-step ahead, 212 2-steps ahead down to 202 
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12-steps ahead forecasts. We should note that we also explored 
forecast evaluation by fixing the models selected for the full 
sample and only re-estimating the parameters at each step of the 
expanding window. The results were not substantially different to 
the ones presented below. 

For the male series the accuracy of the models varies from 0.51% 
to 2.86% for the mean APE across the 1 to 12-steps ahead 
forecast horizons. These are very accurate forecasts for both ETS 
and ARIMA models. The forecasts for the females are slightly less 
accurate varying from 1.67% to 6.31% for the mean APE. Figure 

9 shows box plots across each forecast horizon. For both male 
and female series, it seems that ARIMA forecasts are slightly 
more accurate and possibly the preferred model.

PREDICTION INTERVAL COVERAGE

Producing estimates of uncertainty is an important aspect of 
forecasting which is often ignored in practice. Table 3 shows the 
empirical coverage of the prediction intervals generated from the 
two sets of models. The coverage of both sets of models is fairly 
similar. The expectation is that prediction intervals with a 95% 

Figure 8. Longer-term (5-years-ahead) point and interval forecasts 
for the male and female series from the selected ARIMA 
and ETS models (This is only for illustrative purposes)
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Figure 9. Forecast evaluation for male and female series

(80%) nominal coverage rate should contain the observed values 
95% (80%) of the time. It is not surprising that the empirical 
coverage is lower than the nominal rate. In general, forecasting 
methods often tend to overestimate the coverage probabilities 
of the forecast intervals they generate and it is not unusual, 
especially for pure time series models, to have relatively low 
empirical coverage. Hence when projecting forward, we should 
keep these observed coverages in mind especially for the longer 
forecast horizons.

EXPLORING FORECAST ACCURACY AND 
COVERAGE FURTHER

Figure 10 shows the point and interval forecasts generated by 
the ARIMA framework over the rolling test window, starting from 
a training window of 36 months until the end of the sample, for 
the male and female series, for forecast horizons 1, 4, 9 and 12. 
The figure clearly shows that the coverage of the ARIMA models 
for the female series is closer to the nominal coverage rate due 
the prediction intervals being wider. This is mainly driven by a 
larger in-sample error variance for the models estimated for the 
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Table 2.  Mean and median absolute percentage errors (APE) for males and females using an expanding 
window starting from a minimum training period of 36 months

h

Males Females
Mean APE Median APE Mean APE Median APE

ARIMA ETS ARIMA ETS ARIMA ETS ARIMA ETS
1 0.52 0.51 0.43 0.41 1.67 1.68 1.23 1.28

2 0.85 0.83 0.69 0.65 2.62 2.58 2.07 1.87

3 1.11 1.07 0.88 0.81 3.23 3.22 2.84 2.35

4 1.34 1.31 1.17 1.00 3.70 3.78 2.98 2.98

5 1.56 1.55 1.18 1.10 4.11 4.22 3.59 3.59

6 1.75 1.76 1.44 1.42 4.37 4.61 3.69 3.69

7 1.92 1.95 1.53 1.47 4.59 4.93 3.98 4.31

8 2.10 2.18 1.70 1.76 4.90 5.25 4.16 4.51

9 2.25 2.37 1.79 1.97 5.09 5.51 4.45 4.48

10 2.37 2.54 2.04 2.13 5.19 5.72 4.42 4.99

11 2.48 2.70 2.08 2.26 5.45 6.00 4.65 5.50

12 2.58 2.86 2.07 2.35 5.66 6.31 5.08 5.69

Av. 1.74 1.80 1.42 1.44 4.22 4.48 3.59 3.77

female series due to the higher ‘wiggliness’ of the female series 
compared to the male series. In contrast the relatively smoother 
male series leads to more accurate point forecasts and prediction 
intervals that are too tight to achieve the nominal coverage rates. 

The plots also show that as the forecast horizon increases it is 
challenging to forecast the turning points (i.e., to capture the 
cyclical property of both series). Failing to follow these challenging 
turns in direction, causes the coverage rates of the forecast 
intervals to be below their nominal values.

Table 3.  Forecast interval coverage for intervals with nominal coverage 80% and 95% for males and females

h

Males Females
80% 95% 80% 95%

Arima ETS Arima ETS Arima ETS Arima ETS
1 75.59 79.34 92.02 92.96 76.53 79.81 92.02 93.9

2 74.06 77.36 90.09 88.21 75.00 75.00 89.62 89.62

3 73.93 72.51 88.63 86.26 72.99 72.51 89.10 91.47

4 72.38 71.43 87.14 85.71 74.29 75.24 89.52 90.48

5 68.42 72.25 86.60 85.65 70.34 74.16 92.34 91.87

6 72.12 71.15 84.62 86.54 71.15 75.48 94.23 90.39

7 71.50 70.05 83.58 84.06 73.91 73.91 93.72 91.79

8 68.93 66.99 84.47 84.95 76.21 75.73 93.69 92.72

9 67.81 66.34 86.34 83.90 77.07 74.15 93.66 92.68

10 66.67 65.69 86.28 81.37 75.49 75.00 94.12 92.65

11 65.03 66.50 86.70 82.76 77.83 76.36 93.60 93.60

12 67.33 68.32 83.66 82.67 78.71 75.74 91.58 95.55

Av. 70.31 70.66 86.68 85.42 74.96 75.26 92.27 92.23

We should note that we also experimented with running the 
expanding window exercise a sub-period starting from August 
2012 for males and January 2012 for females. Hence these did 
not include in the analysis the structural break period highlighted 
in Figure 1. The results for both point forecast accuracy and 
interval forecast coverages improved. However given that this 
period is considerably short for any robust forecast evaluation we 
chose not to report these results as they could be misleading. 
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Figure 10. ARIMA point forecasts (red line) and 95% interval forecasts (grey lines) for the male and 
female series (black lines) over the test windows for forecast horizons 1, 4, 9 and 12 
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SUMMARY AND DISCUSSION

The aim of this report is to generate both reliable point and 
interval forecasts for total male and female daily averages in 
prison. To this end, ARIMA and exponential smoothing models 
were constructed using a portion of the data in male and female 
inmate numbers. Forecasts for each model were then generated 
and compared with actual male and female inmate numbers. The 
results indicate that both models give fairly accurate forecasts but 
the selected ARIMA model slightly outperforms the ETS model, at 
least over the longer-term (i.e. 8-12 months ahead). 

It should not be assumed from this that the recommended ARIMA 
model is the only tool necessary to understand likely changes in 
inmate numbers. It will always be challenging picking the turning 
points that occur in response to exogenous shocks to the criminal 
justice system (e.g. sudden increases in police arrest rates, 
sudden changes in the proportion refused bail). Users of prison 
forecast models should keep a close eye on factors outside the 
prison system that are likely to impact on inmate growth. This 
is particularly true of changes in arrest and bail refusal rates as 
changes in these particular variables can have large and rapid 
effects on inmate numbers.  

There is clearly scope for further improvements in the forecasting 
process. The prison population (male or female) is made up of 
different subgroups, the size of which is of intrinsic interest to 
prison administrators. There are, for example, likely to be different 
resource requirements for remand and sentenced prisoners, 
Indigenous and non-Indigenous prisoners, young and elderly 
prisoners. The ideal forecast models would provide separate 
forecasts for each of these subpopulations as well as for the 
prison population as a whole. The authors are currently working 
on an approach to prison population forecasting that will generate 
reliable forecasts of subpopulations within the correctional 
system.  
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NOTES

1.	 Unpublished data from NSW Bureau of Crime Statistics and 
Research, October 29, 2018. Available on request from the 
second author.
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